메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Süleyman İpek (Bingöl University) Kasım Mermerdaş (Harran University)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.26 No.4
발행연도
2020.1
수록면
327 - 342 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using softcomputing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (51)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0