메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yao-Zhi Luo (Zhejiang University) Yan-Bin Shen (Zhejiang University) Wenwei Fu (Zhejiang University) Chung Bang Yun (Zhejiang University) Dun Liu (CITIC General Institute of Architectural Design and Research Co.) Pengcheng Yang (Country Garden Holdings Company Limited) Guang Yang (China Railway SIYUAN Survey & Design Group Co.) Guangen Zhou (Zhejiang Southeast Space Frame Company)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.1
발행연도
2021.1
수록면
19 - 33 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Structural health monitoring (SHM) is facilitated by new technologies that involve wireless sensor networks (WSNs). The main benefits of WSNs are that they are distributed, are inexpensive to install, and manage data effectively via remote control. In this paper, a wireless SHM system for the steel structure of Hangzhou East Railway Station in China is developed, since the state of the structural life cycle is highly complicated and the accompanying internal force redistribution is not known. The monitoring system uses multitype sensors, which include stress, acceleration, wind load, and temperature sensors, as the measurement components for the structural features, construction procedure, and on-site environment. The sensor nodes communicate with each other via a flexible tree-type network. The system that consists of 323 sensors is designed for the structure, and the data acquisition process will continue throughout its whole life cycle. First, a full-scale application of SHM using a WSN is described in details. Then, it focuses on engineering practice and data analysis. The current customized WSN has been demonstrated to have satisfactory durability and strong robustness; hence, it well satisfies the requirements for multi-type sensors to operate in a large area. The data analysis results demonstrate that the effects of the construction process and the environment on the super-large-scale structure have been captured accurately. Those effects include the stress variation throughout the construction process, the dynamic responses that are caused by passing trains, the strain variation caused by temperature change over the long term, and the delay in the wind-pressure history.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0