메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Panagiotis Martakis (ETH Zurich) Yves Reuland (ETH Zurich) Eleni Chatzi (ETH Zurich)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.2
발행연도
2021.1
수록면
157 - 172 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Precise knowledge of dynamic characteristics and data-driven inference of material properties of existing buildings are key for assessing their seismic capacity. While dynamic measurements on existing buildings are typically extracted under ambient conditions, masonry, in particular, exhibits nonlinear behavior at already very low shaking amplitudes. This implies that material properties, inferred via data-driven model updating under ambient conditions, may be inappropriate for predicting behavior under seismic actions. In addition, the relative amount of nonlinearity arising from structural behavior and soilstructure interaction are often unknown. In this work, Bayesian model updating is carried out on field measurements that are representative of increasing levels of shaking, as induced during demolition, on a pre-code masonry building. The results demonstrate that masonry buildings exhibit nonlinear behavior as the elastic modulus drops by up to 18% in the so-called equivalent elastic range, in which the observed frequency drop is reversible, prior to any visible sign of damage. The impact of this effect on the seismic assessment of existing structures is investigated via a nonlinear seismic analysis of the examined case study, calibrated under dynamic recordings of varying response amplitude. While limited to a single building, such changes in the inferred material properties results in a significant reduction of the safety factor, in this case by 14%.

목차

등록된 정보가 없습니다.

참고문헌 (80)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0