메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Loke Kok Foong (Duy Tan University) Yinghao Zhao (South China University of Technology) Chengzong Bai (South China University of Technology) Chengyong Xu (Duy Tan University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.5
발행연도
2021.1
수록면
745 - 759 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Due to the benefits of the early prediction of concrete slump, introducing an efficient model for this purpose is of great importance. Considering this motivation, four strong metaheuristic algorithms, namely electromagnetic field optimization (EFO), water cycle algorithm (WCA), teaching-learning-based optimization (TLBO), and multi-tracker optimization algorithm (MTOA) are used to supervise a neural predictive system in analyzing the slump pattern. This supervision protects the network against computational issues like pre-mature convergence. The overall results (e.g., Pearson correlation indicator larger than 0.839 and 0.807 for the training and testing data, respectively) revealed the competency of the proposed models. However, investigating the rankings of the models pointed out the superiority of the WCA (MAE<sub>train</sub> = 3.3080 vs. 3.7821, 3.5782, and 3.6851; and MAE<sub>test</sub> = 3.8443 vs. 4.0326, 4.1417, and 4.0871 obtained for the EFO, TLBO, and MTOA, respectively). Moreover, the high efficiency of the EFO in terms of model complexity and convergence rate, as well as the adequate accuracy of prediction, demonstrated the suitability of the corresponding ensemble. Therefore, the neural systems trained by these two algorithms (i.e., the WCA and EFO) are efficient slump evaluative models and can give an optimal design of the concrete mixture for any desirable slump.

목차

등록된 정보가 없습니다.

참고문헌 (162)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0