메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황교신 (영남대학교)
저널정보
장전수학회 Advanced Studies in Contemporary Mathematics Advanced Studies in Contemporary Mathematics Vol.30 No.3
발행연도
2020.1
수록면
435 - 445 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The sub-linear expectation space is a nonlinear expecta- tion space having advantages of modeling the uncertainty of probability and statistics. Strong convergence for non-additive probabilities or non- linear expectation are challenging issues which have raised progressive interest recently. In the sub-linear expectation space, we use capac- ity and sub-linear expectation to replace probability and expectation of classical probability theory. Recently Zhang has proved very important theorems in the sub-linear expectation space which can be looked upon as being extensions of Kolmogorov's three series theorem in classical probability theory. Zhang and Lin obtained Marcinkiewicz's strong law of large numbers for sums of independent random variables under sub- linear expectation space. In addition, they have given a theorem about strong convergence of a random series for independent random variables under sub-linear expectation. In this paper we investigate the strong convergence for sums of inde- pendent random variables under sub-linear expectation and gives also almost surely convergence of sums of independent random variables in capacity. They are extensions of strong convergence of a random series and almost surely convergence of sums for independent random variables in the framework of sub-linear expectation. By using Zhang's result, the proof rests on the methods of proof due to Petrov's result concerning the almost sure convergence of series of independent random variable. As an application Marcinkiewicz's strong law of large number for nonlinear expectation are obtained.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0