메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
배성현 (양산부산대학교병원) 손동욱 (부산대학교) 이수훈 (양산부산대학교병원) 이준석 (양산부산대학교병원) 이상원 (양산부산대학교병원) 송근성 (양산부산대학교병원)
저널정보
대한신경손상학회 Korean Journal of Neurotrauma Korean Journal of Neurotrauma Vol.16 No.2
발행연도
2020.1
수록면
226 - 234 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Recently, many studies have reported that cervical alignment is related to clinicaloutcomes. However, poor visibility of anatomical structures during X-ray (XR) imaging limitsaccurate measurements. In supine magnetic resonance (MR) imaging, the boundary of theanatomical structure is clear, but the correlation to XR images taken in a standing positionis problematic. In this study, we evaluated the agreement of sagittal alignment parametersbetween MR and XR measurements. Methods: We retrospectively reviewed 268 patients. Cervical sagittal parameters weremeasured using XR and MR images, and their relationships were evaluated using Pearson'scorrelation, paired t-tests, and 2-way random, single score intraclass correlation coefcient(ICCs) (2,1). Using simple linear regression analysis, MR results were converted to theexpected value (MR-E). The subsequent comparison of MR-Es with XRs was used to examinewhether MR-Es could replace XRs when the measurement difference was less than 2 mm or 2°. Results: The correlation between the MR and XR measurements was high, but ICCs showedlow reliability. All parameters were signifcantly different between XR and MR measurementsin paired t-tests. Converting the MR values eliminated the t-test differences between MR-Esand XRs, but did not affect correlations and ICCs. The replacement ratio included the Cobbangle: 20.3%, T1: 27.1%, the sagittal vertical axis: 17.6%, C1–2: 29.7%, and C2: 16.0%. Conclusion: These results indicate that supine MR measurements could not replace uprightXR measurements

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0