메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Debangshu Dey (Jadavpur University) Sayanti Chaudhuri (Jadavpur University) Sugata Munshi (Jadavpur University)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.8 No.1
발행연도
2018.1
수록면
95 - 100 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This letter presents an automated obstructive sleep apnoea (OSA) detection method with high accuracy, based on a deeplearning framework employing convolutional neural network. The proposed work develops a system that takes single leadelectrocardiography signals from patients for analysis and detects the OSA condition of the patient. The results show thatthe proposed method has some advantages in solving such problems and it outperforms the existing methods significantly. The present scheme eliminates the requirement of separate feature extraction and classification algorithms for the detectionof OSA. The proposed network performs both feature learning and classifies the features in a supervised manner. Thescheme is computation-intensive, but can achieve very high degree of accuracy—on an average a margin of more than 9%compared to other published literature till date. The method also has a good immunity to the contamination of the signalsby noise. Even with pessimistic signal to noise ratio values considered here, the methods already reported are not able tooutshine the present method. The software for the algorithm reported here can be a good contender to constitute a modulethat can be integrated with a portable medical diagnostic system.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0