메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jia Guo (PetroChina Huabei Oilfield Company) Wei Huang (PetroChina Huabei Oilfield Company) Qiong Mao (PetroChina Huabei Oilfield Company) Xudong Wang (PetroChina Huabei Oilfield Company) Xinying Wang (PetroChina Huabei Oilfield Company) Tao Song (PetroChina Huabei Oilfield Company)
저널정보
한국자원공학회 Geosystem Engineering Geosystem Engineering Vol.21 No.4
발행연도
2018.1
수록면
217 - 225 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The self-organizing Group Method of Data Handling (GMDH) functional network is effective in predicting oilfield production. During operation the division of data sample depending on artificial classification cannot lead to global optimum in great probability and the variables are probably eliminated early in the iterative process in traditional GMDH algorithm. Recent years, GMDH model has been improved through many artificial intelligent models, but few people take the optimization of the model structure into account. In this paper, different training and testing set grouping and the effects of variables transmission were studied. The modified GMDH algorithm was optimized using the original variables preservation method and the random sample method, which was applied to the oilfield production forecasting simulation. The results of the modified GMDH algorithm, the traditional GMDH algorithm, ANNs and the empirical equations for predicting annual oil production were compared. The simulative results indicated that the modified GMDH model was the best tool for data-fitting with lowest error (RMSE = 13.9440, MAPE = 0.1121 and SI = 0.0378) and highest accuracy (R = 0.9984).

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0