메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이영호 (서울대학교)
저널정보
대한류마티스학회 대한류마티스학회지 대한류마티스학회지 제23권 제1호
발행연도
2016.1
수록면
4 - 10 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The need to combine direct and indirect evidence is increasing in clinical fields, and this is especially true when direct evidence is inconclusive. Thus, in recent years, network meta-analysis has been utilized increasingly in medicine. Network meta-analysis is a statistical method that enables comparison of multiple treatments simultaneously—by combining direct and indirect evidence of the relative treatment effects—to assess the comparative effectiveness of multiple interventions even if there are no head-to-head comparisons. Network meta-analysis has some advantages in addressing all treatments for a specific condition, comparing interventions and ranking the efficacy and safety of multiple treatments, and increasing the certainty of evidence by pooling direct and indirect evidence to generate overall estimates. The major assumption in network meta-analysis is exchangeability of the studies, and other key assumptions include similarity, consistency, and transitivity. The Bayesian approach is used most commonly in network meta-analysis because it provides greater flexibility that allows for the use of more complex models and can produce estimates of rank probabilities. Bayesian network meta-analysis produces treatment rankings according to the probability of being the best treatment, the second best, third best, and so forth. Network meta-analysis is an interesting method that provides useful information for use in by rheumatologists in decision-making. (J Rheum Dis 2016;23:4-10)

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0