메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hee-Myong Ro (Seoul National University) Yoonmi Ji (Seoul National University) Bangyong Lee (Korea Polar Research Institute)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.22 No.1
발행연도
2018.1
수록면
121 - 130 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Geomorphic disturbances to surrounding terrain induced by thermal degradation of permafrost often lead to surface ponding or soil saturation. However, interactions between soil moisture and temperature on belowground carbon processes are not fully understood. We conducted batch incubation for three temperature treatments [constant freezing (CF), constant thawing (CT), and fluctuating temperatures (FTC)] and two soil moisture conditions (ponded and unsaturated). Extracellular enzyme activity was higher under ponded conditions than under unsaturated conditions, resulting in higher dissolved organic carbon (DOC) levels for ponded conditions. More CO2 and less CH4 were emitted under unsaturated conditions than under ponded conditions. Carbon dioxide emission was similar for CT and FTC treatments regardless of moisture conditions. However, CH4 emission was higher under ponded conditions than under unsaturated conditions for CT treatments, but was very low for FTC treatments regardless of moisture conditions. Little CO2 and CH4 were produced in CF treatments. Despite similar CO2 and CH4 emission levels for CT and FTC treatments, lower DOC levels were observed in the latter, indicating slower soil organic carbon (SOC) decomposition. Similar DOC variation patterns between CT and CF treatments indicated that SOC decomposition was considerable and further degradation to CO2 or CH4 was negligible even for CF treatments. The SOC decomposition and CO2 and CH4 emissions were considerable for FTC treatments. Our results suggest that labile-C produced during SOC decomposition in seasonally frozen soils and permafrost may provide supplemental substrates that would enhance the positive feedback to climate change with rising temperatures and wetter conditions.

목차

등록된 정보가 없습니다.

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0