메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seong Hoon Kim (POSTECH) Dae Ha Kim (Daewha Alloytech) Keum-Cheol Hwang (Daewha Alloytech) Sang-Bok Lee (Korea Institute of Materials Science) Sang-Kwan Lee (Korea Institute of Materials Science) Hyun Uk Hong (Changwon National University) Dong-Woo Suh (POSTECH)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.22 No.5
발행연도
2016.1
수록면
935 - 941 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A particulate TiC-reinforced SKD11 steel matrix composite is fabricated by using a pressure infiltration casting, achieving a homogeneous distribution of the particles with 60 vol%. The retained austenite fraction in the composite matrix is approximately 19% after quenching from the austenitization temperature of 1010 °C, which is larger than 13% in as-quenched condition of unreinforced SKD11. A combined analysis on the austenite lattice parameter using XRD profiles and first-principle calculation suggests the increase of carbon content in the steel matrix possibly by partial dissolution of TiC during casting. The change of carbon content and prior austenite grain size reasonably accounts for the increase of retained austenite fraction in the composite matrix. In the austenitizing temperatures ranging from 950 °C to 1040 °C, the retained austenite fraction in the composite matrix in as-quenched condition increases more rapidly than that of unreinforced SKD11 with the increase of austenitization temperature, while the hardness of the composite is less sensitive to the austenitization temperature. This suggests that it is advantageous to conduct the austenitization at a temperature below 1010 °C, which is typical practice of austenitization of the unreinforced SKD11, because the retention of austenite is effectively suppressed while minimizing the loss of hardness.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0