메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김유경 (한국수자원공사 K-water 연구원) 서인석 (한국수자원공사 수자원연구원)
저널정보
한국수처리학회 한국수처리학회지 한국수처리학회지 제25권 제4호
발행연도
2017.1
수록면
87 - 94 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Application of reverse osmosis(RO) membranes is increasing due to the demand increase for the industrial water and sewage reuse recycling rate. However, it produces RO concentrate wastewater. RO concentrate is difficult to handle by conventional wastewater treatment because it contains a high concentration of non-biodegradable organics. So, it’s treatment acts as a bottleneck phenomenon of industrial water production. This study presents the Fenton-like oxidation using zero-valent iron(ZVI) as a way to handle the non-biodegradable organic material in the RO concentrate wastewater. Recently, ZVI has attention as alternative reducing agent in the way that it does not cause toxicity. The main objective of this research is to investigate the effects of a variety of factors such as pH, ZVI dose and reaction time for removal of organics in RO concentrate by Fenton-like oxidation with ZVI. All tests were proceeding under the three steps: Fenton-like oxidation, Neutralization and Sedimentation. The results show that the Fenton-like oxidation with ZVI was able to remove organics in RO concentrate. The optimal factors in Fenton-like oxidation were determined; pH 2 and 2 hours as reaction time. With this condition, the removal efficiency of chemical oxygen demand (COD) was about 37 percent at 500 mg/L as hydrogen peroxide and 750 mg/L as ZVI. Meanwhile, this study represents that the Fenton-like oxidation with ZVI has a lower organic removal efficiency than the Fenton’s oxidation. In order to achieve the same removal efficiency as Fenton’s oxidation, the Fenton-like oxidation with ZVI requires the use of more hydrogen peroxide.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0