메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김광복 (전남대학교) 김종면 (울산대학교) 김철홍 (전남대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제13권 제3호
발행연도
2017.1
수록면
72 - 83 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
GPU는 다수의 워프를 병렬적으로 수행함으로써 레이턴시를 숨기면서 높은 처리량을 제공할 수 있다. 만약 GPU에서 캐쉬에 대한 요청이 미스를 발생시킨다면 하위 메모리로부터 요청한 데이터를 받을 때까지 MSHR(Miss Status Holding Register)을 통해 미스 정보를 추적하고 다른 워프를 수행한다. 최신 GPU에서는 캐쉬 자원에 대한 과도한 요청이 발생한 경우 자원점유 실패가 발생하여 GPU 자원을 충분히 활용할 수 없는 경우가 자주 발생한다. 본 논문에서는 MSHR 자원 부족으로 인해 발생하는 성능 감소를 줄이고자 새로운 워프 스케줄링 기법을 제안한다. L1 데이터 캐쉬에서 각 워프별 캐쉬 미스율은 긴 사이클 동안 비슷하게 유지되는 특성을 이용하여 각 워프들의 캐쉬 미스율을 예측하고, 이를 바탕으로 MSHR의 자원을 더 이상 사용할 수 없는 상태에서는 낮은 캐쉬 미스율을 보일 것으로 예측되는 워프들과 연산 위주워프들을 우선적으로 이슈 한다. 제안하는 기법은 예측된 캐쉬 미스율과 MSHR 상태를 기반으로 캐쉬 자원을 더 효율적으로 사용함으로써 GPU 성능을 향상시킨다. 실험 결과, 제안된 기법은 LRR(Loose Round Robin) 정책에 비해 자원점유실패 사이클이 25.7% 감소하고 IPC(Instruction Per Cycle)가 6.2% 증가한다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0