메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yang Lv (Hubei University) Xianbao Wang (Hubei University) Tao Mei (Hubei University) Jinhua Li (Hubei University) Jianying Wang (Hubei University)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.13 No.5
발행연도
2018.1
수록면
30 - 37 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Cobalt phosphide (CoP) has aroused extensive research interest in a field of electrochemical application due to its excellent catalytic activities. CoP and its compounds have been widely reported using in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, few reports about CoP as electrocatalysts for oxygen reduction reaction (ORR) were presented. In this work, we prepare reduced graphene-oxide(rGO)-loaded CoP (rGO@CoP) as an electrocatalyst for ORR through in situ hydrothermal treatment. The rGO@CoP as ORR catalyst exhibits excellent activities where its onset potential has a positive increase of 129 mV, and the ORR potential achieves an increase of 330mV at a current density of 1.0mA cm -2 compared with that of pure CoP. The current density is also significantly improved with an increase of 0.51mA cm -2 at -350 mV, and the Tafel slope has a decrease of 19mV dec -1. Further tests show that the electron transfer number of rGO@CoP is 3.66, which is larger than 2.19 of pure CoP, indicating that it is dominated by a four-electron transfer pathway. Moreover, its stability (remained 98.6% current after working 6000 s) and methanol tolerance are outstanding. These results show that rGO@CoP may be considered to replace traditional Pt-based ORR catalysts for fuel cells, and rGO loading has been proven to be an effective strategy to enhance the ORR performance of CoP, which may provide a new idea to synthesize transition metal phosphides as ORR catalysts.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0