메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Bhargavi Nadella (KL University)
저널정보
아태인문사회융합기술교류학회 아시아태평양융합연구교류논문지 아시아태평양융합연구교류논문지 제2권 제3호
발행연도
2016.1
수록면
21 - 28 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Geometric range scan is a key primitive for spatial information analysis in SQL and NoSQL databases. It has broad applications in area based administrations, PC aided design, and computational geometry. Due to the dramatic increase in information size, it is fundamental for organizations and associations to outsource their spatial informational indexes to outsider cloud administrations (e.g., Amazon) so as to decrease stockpiling and inquiry handling costs, at the same time, then, with the guarantee of no security spillage to the outsider. Searchable encryption is a system to perform significant inquiries on encoded information without uncovering security. In any case, geometric range seek on spatial information has not been completely researched nor upheld by existing searchable encryption plans. In this paper, we outline a symmetric-key searchable encryption plot that can bolster geometric range questions on encoded spatial information. One of our real commitments is that our plan is a general approach, which can bolster distinctive sorts of geometric range questions. At the end of the day, our plan on scrambled information is autonomous from the states of geometric range questions. In addition, we additionally develop our plan with the extra utilization of tree structures to accomplish look multifaceted nature that is speedier than straight. We formally characterize and demonstrate the security of our plan with indistinguish capacity under specific picked plaintext assaults, and show the execution of our plan with trials in a genuine cloud stage (Amazon EC2).

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0