메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gemma S. Parra-Dominguez (University of Toronto) Jasper Snoek (Harvard University) Babak Taati (University Health Network) Alex Mihailidis (University Health Network)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.5 No.2
발행연도
2015.1
수록면
98 - 108 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose We present a methodology to automatically detect falls on stairs, an application of computer vision and machine learning techniques with major real-world importance. Falls on the stairs, in particular, are a common cause of injury among older adults. Comprehending the conditions under which accidents take place could significantly aid in the prevention of falls, support independent living, and improve quality of life. Methods We extract a set of features, composed of Fourier coefficients and entropy metrics of instantaneous velocities from 3D motion sensor data, to encode lower body motion during stair navigation. A supervised learning algorithm is then trained on manually annotated data simulated in a home laboratory. Results In our empirical analysis, the algorithm obtains high fall detection accuracy (> 92%) and a low false positive rate (5-7%). In contrast with previous research, we identify that motion of the hips, rather than that of the feet, is the best indicator of dangerous activity given the 3D trajectory of various lower body joints. It is also shown that entropy measures alone provide sufficient information to detect abnormal events on stairs. Conclusions The study of falls is difficult due to their exceedingly sparse nature; but an automatic non-contact fall detection system can assist in data collection by sieving through large quantities of data, e.g., from public stairways.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0