메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한비과학회 Journal of Rhinology Journal of Rhinology Vol.22 No.1
발행연도
2015.1
수록면
28 - 33 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Objectives:Sinus surgery has been reported to improve pulmonary function and decrease the use of asthma medications in patients with chronic rhinosinusitis and asthma. Most studies, however, have used a small number of patients and were conducted over a short period. To demonstrate a causal relationship between sinus surgery and asthma, a sufficient amount of patient data observed over a long period is required. To address the limitations of the existing approaches, we conducted a preliminary methodological study for large-scale data analysis using data from the National Health Insurance Service (NHIS) to suggest a basis for the effect of sinus surgery on asthma. Materials and Methods:The data from NHIS consisted of unidentified medical histories of a sample cohort representing the whole nation over a period of nine years. We selected the following types of study samples: 1) patients with surgical codes for sinus surgery; 2) patients with disease codes for sinusitis; 3) patients with disease codes for asthma; and 4) patients with medication codes for asthma treatment. Results:In this study, we applied a methodology for selection of subjects from big data to investigate the effect of sinus surgery on improving asthma in the future. We could include 152 subjects after the four-stage selection method from 1,025,340 patients. Conclusion:We could establish a method to select patients with history of sinus surgery and asthma treatment from a big data. This methodology using big data may contribute to identify relationship between sinus surgery and asthma treatment in the future.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0