메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업식품공학회 산업식품공학 산업식품공학 제15권 제4호
발행연도
2011.1
수록면
324 - 331 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Hyperspectral reflectance imaging technology was used to predict internal quality of cherry tomatoes with the spectral range of 400-1000 nm. Partial least square (PLS) regression method was used to predict firmness, sugar content, and acid content. The PLS models were developed with several preprocessing methods, such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC), and derivative of Savitzky Golay. The performance of the prediction models were investigated to find the best combination of the preprocessing and PLS models. The coefficients of determination (R_p^2) and standard errors of prediction (SEP) for the prediction of firmness, sugar content, and acid content of cherry tomatoes from green to red ripening stages were 0.876 and 1.875 kgf with mean of normalization, 0.823 and 0.388°Bx with maximum of normalization, and 0.620 and 0.208% with maximum of normalization, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0