메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박수환 (서울대학교) 이제희 (서울대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제27권 제5호
발행연도
2021.12
수록면
73 - 79 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 컴퓨터 애니메이션 분야에서는 기존의 유한상태기계나 그래프 기반의 방식들에서 벗어나 딥러닝을 이용한 동작 생성방식이 많이 연구되고 있다. 동작 학습에 요구되는 네트워크의 표현력은 학습해야 하는 동작의 단순한 길이보다는 그 안에 포함된 동작의 다양성에 더 큰 영향을 받는다. 본 연구는 이처럼 학습해야 하는 동작의 종류가 다양한 경우에 효율적인 네트워크 구조를 찾는것을 목표로 한다. 기본적인 fully-connected 구조, 여러개의 fully-connected 레이어를 병렬적으로 사용하는 mixture of experts구조, seq2seq처리에 널리 사용되는 순환신경망(RNN), 그리고 최근 시퀀스 형태의 데이터 처리를 위해 자연어 처리 분야에서 사용되고 있는 transformer구조의 네트워크들을 각각 학습하고 비교한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 피격 반응 생성 시스템
4. 네트워크 학습
5. 실험 결과
6. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000114589