메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yuta Nishida (Kyushu Institute of Technology) Yujie Li (Fukuoka University) Tohru Kamiya (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
2,043 - 2,046 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The number of users of electric wheelchairs has been increasing in recent years because it is easy to operate the electric wheelchair and do not require physical strength. However, the traffic accidents are also increasing because of the large number of wheelchairs. The development of autonomous electric wheelchairs is expected to reduce the risk of accidents and improve the convenience of electric wheelchairs. Environmental recognition is essential for the development of autonomous electric wheelchairs. In this paper, we propose a method for recognizing roads, sidewalks, buildings, electric wheelchair drivers, poles, electric wheelchairs, vegetation, curbs, sky, pedestrians, lanes, cars, steps, and bicycles. For recognizing those objects, we use a panoramic image acquired from a spherical camera. As the machine techniques, we use DeepLab v3+, a semantic segmentation algorithm based on Convolutional Neural Network (CNN). In the proposed method, a new CNN model is constructed by adding deformable convolution, SE-block, and MobileNet v2 to DeepLab v3+ into the original DeepLab v3+. In the experiment, IoU 38.8% and Dice of 46.7% were obtained.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. EXPERIMENT
4. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0