메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권은상 (충남대학교) 노명규 (충남대학교) 이남수 (LG전자) 백성기 (LG전자) 박영우 (충남대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.39 No.2
발행연도
2022.2
수록면
123 - 129 (7page)
DOI
10.7736/JKSPE.021.087

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Magnetic bearings are being actively adopted by the turbo-chiller industry because of their higher efficiency during partial load, quieter operation, and smaller footprint than that which machines with ball bearings provide. Since magnetic bearings are open-loop unstable, feedback control is necessary. In the industry, traditional PID-based control is preferred to model-based control, because of its simplicity. When traditional control algorithms are used, significant resources are required to obtain and tune control parameters, which is an impediment to the widespread use of magnetic bearing technology in the industry. In this paper, we propose a mixed optimization method by combining genetic algorithm and sequential quadratic programming. To obtain the initial guess to be used for the mixed optimization, a phase-margin maximization algorithm is also proposed, based on the rigid-body model of the system. Mixed optimization results in suitable control parameters in less than 2.8% of the time it takes a genetic algorithm only to find similar solutions. The proposed optimization also ensures the robustness of the control parameters. The output sensitivity measured from a prototype compressor with magnetic bearings confirms the validity of the control parameters.

목차

1. 서론
2. 이론적 배경
3. 강체모드 제어기 설계
4. 유연모드 제어기 최적화
5. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-555-000211158