메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seunggyu Byeon (Silla University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
320 - 323 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Accurate indoor positioning with wireless signal has been a great challenge for decades. A variety of techniques proposed to advance the positioning accuracy by means of the convergence of existing technologies. Signal fingerprint is the most common approach for building environments due to its significantly low device cost over the other techniques. In this study, we propose fuzzy logic-based indoor position learning technique using fuzzy c-means clustering and fuzzy decision tree for smartphone environment. Among the available signals from smartphone, we mainly use raw RNSS signals from satellite and Wi-Fi beacon signals from telecommunication providers as feature to develop the learning model. Position learning consists of two elements; building fuzzy decision tree and classify fuzzy and less-fuzzy data. Firstly, it builds Fuzzy Decision Tree based on the preceding FCM clustering result. Next, it recursively repeats the process on its subtrees until they are not classified as more than one class. The method has a great generality owing to the following two reasons; it can exploit all the available wireless signals for smartphone, and it differently establishes the learning structure depending on the data.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND METHODS
III. RESULTS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0