메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종범 (충남연구원) 박세찬 (나옴) 이용일 (한강유역환경청) 이선엽 (근로복지공단) 김정호 (미세먼지연구소) 박덕신 (한국철도기술연구원)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제38권 제1호
발행연도
2022.2
수록면
30 - 45 (16page)
DOI
10.5572/KOSAE.2022.38.1.30

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Concern and caution for the atmospheric environment has been increasing recently; the air quality in urban subways, a major means of transportation in large cities, is a major concern. To manage this situation, the Korean government has installed real-time monitoring devices at all subway stations and its data is made available to the public. In this study, we carried out an influence analysis between the indoor and outdoor environment, and future concentration prediction (1 hour later) using machine learning; real-time data was measured at Suyu station. PM<SUB>10</SUB> concentration on a platform at Suyu station was 146.0 μg/㎥, exceeding the indoor air quality standards. The annual average concentration of CO₂ was 530 ppm, which was below the indoor air quality standards. The correlation analysis between pollutants and measurement points showed that PM<SUB>10</SUB> had a high correlation coefficient for train passing number (TPN), tunnel, concourse, and platform. NO showed high correlation for concourse, platform, and ambient air. The prediction results (R²) for big data obtained using machine learning was 0.69. We confirmed that it is possible to predict indoor air quality of subway stations by employing machine learning and real-time monitoring data. In future, the results of this study can be used as basic information for establishing an indoor air quality management plan for subway stations.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0