메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeong-Ju Kang (Korea University of Technology and Education)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제2호
발행연도
2022.2
수록면
325 - 328 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A convolutional neural network(CNN) is widely used in the computer vision tasks, but its computing power requirement needs a design of a special circuit. Most of the computations in a CNN can be implemented efficiently in a digital circuit, but the SoftMax layer has operations unsuitable for circuit implementation, which are exponential and logarithmic functions. This paper proposes a new method to integrate the exponential and logarithmic tables of the conventional circuits into a single table. The proposed structure accesses a look-up table (LUT) only with a few maximum values, and the LUT has the result value directly. Our proposed method significantly reduces the space complexity of the SoftMax layer circuit implementation. But our resulting circuit is comparable to the original baseline with small degradation in precision.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. SoftMax 층의 회로 구현
Ⅲ. 제안하는 회로
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001093383