메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류의림 (숙명여자대학교) 이기용 (숙명여자대학교) 정연돈 (고려대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제27권 제1호
발행연도
2022.2
수록면
63 - 79 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 머신러닝 및 딥러닝 기법을 활용한 주식 가격 예측 연구가 다양하게 이루어지고 있다. 그 중에서도 최근에는 주식 매수 및 매도 주문 정보를 담고 있는 호가창을 이용하여 주가를 예측하려는 연구가 시도되고 있다. 하지만 호가창을 활용한 연구는 대부분 가장 최근 일정 기간 동안의 호가창 추이만을 고려하며, 호가창의 중기 추이와 단기 추이를 같이 고려하는 연구는 거의 진행되지 않았다. 이에 본 논문에서는 호가창의 중기와 단기 추이를 모두 고려하여 주가 등락을 보다 정확히 예측하는 딥러닝 기반 예측 모델을 제안한다. 더욱이 본 논문에서 제안하는 모델은 중단기 호가창 정보 외에도 해당 종목에 대한 동기간 뉴스 헤드라인까지 고려하여 기업의 정성적 상황까지 주가 예측에 반영한다. 본 논문에서 제안하는 딥러닝 기반 예측 모델은 호가창 변화의 특징을 합성곱 신경망으로 추출하고 뉴스 헤드라인의 특징을 Word2vec을 이용하여 추출한 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락 여부를 예측한다. 실제 NASDAQ 호가창 데이터와 뉴스 헤드라인 데이터를 사용하여 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 모델에 비해 정확도를 최대 17.66%p, 평균 14.47%p 향상시켰다. 또한 해당 모델로 모의 투자를 수행한 결과, 21 영업일 동안 종목에 따라 최소 $492.46, 최대 $2,840.83의 수익을 얻었다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 주가 예측에 사용된 데이터
4. 제안하는 주가 등락 예측 모델
5. 실험 결과
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0