메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신광용 (서울대학교) 문수묵 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.3
발행연도
2022.3
수록면
256 - 260 (5page)
DOI
10.5626/JOK.2022.49.3.256

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
컴퓨팅 자원이 부족한 디바이스에 연산량이 많은 딥 러닝 애플리케이션을 실행하기 위해 주변에 있는 서버에 연산을 오프로딩하는 엣지 컴퓨팅 기술이 제안되었다. 그러나 딥 러닝 연산을 오프로딩하기 위해서는 서버에 모델을 먼저 업로드해야 하는 단점이 있다. 이를 해결하기 위해 모델을 점진적으로 전송하는 동시에 서버가 클라이언트 연산을 대신 수행하는 점진적 오프로딩 시스템이 제안되었다[1]. 점진적 오프로딩 시스템은 오프로딩에 걸리는 시간을 크게 단축했으나, 모델 구축 시간을 고려하지 않아서 전체 모델 업로드 시간이 늘어나는 단점이 있었다. 본 논문은 모델 구축과 모델 업로드의 병렬 최적화를 통해 기존 시스템의 문제점을 해결해서 기존 시스템 대비 전체 모델 업로드 시간을 최대 30% 개선했다.

목차

요약
Abstract
1. 서론
2. 기존 점진적 오프로딩 시스템과 문제점
3. 병렬적 모델 구축
4. 실험 결과
5. 결론
References

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0