메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xuandong Chen (Guilin University of Technology) Yang Ming (Guilin University of Technology) Feng Fu (Guilin University of Technology) Ping Chen (Guilin University of Technology)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.2
발행연도
2022.3
수록면
211 - 222 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The service life prediction of reinforced concrete (RC) structures in marine environment is essential in structural repair and health monitoring. In this paper, a numerical model for predicting the service life of reinforced concrete is first developed which considering the time-varying boundary of chloride concentration, critical chloride concentration and density of corrosion current. Based on the model, the effects of water–cement ratio, reinforcement diameter, concrete cover thickness and critical chloride ion concentration on the service life and deterioration duration of RC structures are investigated. The key factors affecting the service life of reinforced concrete structures are determined. More importantly, based on regression analysis, a new simplified empirical model for predicting the service life of RC structures is also developed. It provides a fast assessment tool for practical engineers. Both the numerical model and empirical model validated are suitable for practical engineering applications. The results show that with the increase of water–cement ratio, the service life of reinforced concrete structure decreases exponentially. And with the increase of the thickness of the concrete cover, the service life, deterioration duration, and safety reserve increase linearly. However, the influence of the diameter of the reinforcing bar on the service life can be ignored.

목차

Abstract
1. Introduction
2. Theoretical Background
3. Numerical Model Validation
4. Parametric Analysis Using the New Numerical Model
5. A Simplified Empirical Model for Service Life Prediction
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0