메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김원준 (건국대학교)
저널정보
한국방송·미디어공학회 방송과 미디어 방송과 미디어 제27권 제2호
발행연도
2022.4
수록면
43 - 50 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한 장의 이미지로부터 장면의 깊이 정보를 추정하는 기술은 자율 주행, 실내외 로봇 기반 서비스 등 다양한 응용 분야에서 널리 적용되고 있다. 심층 학습을 이용한 알고리즘이 활발히 연구되면서 이러한 단안 깊이 추정 기술의 산업 분야 적용 범위는 확대되고 있는 추세이다. 그러나, 깊이 경계 정보를 정밀하게 예측하는데 여전히 많은 어려움이 있으며, 다양한 실제 환경에서 획득한 3차원 깊이 정보 구축 또한 많은 비용이 소모되는 문제점이 있다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 단안 깊이 추정 연구의 최신 동향을 소개하고자 한다. 지도 학습 기반 방법부터 최근 활발히 연구되고 있는 비지도 학습 방법까지 상세히 살펴본다. 이와 더불어 대표 방법에 대한 성능 평가 결과도 간략히 제시하고자 한다.

목차

요약
Ⅰ. 서론
Ⅱ. 심층신경망 기반 단안 깊이 추정 기술 동향
Ⅲ. 성능 평가
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001301277