메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종현 (Kangnam University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제5호(통권 제218호)
발행연도
2022.5
수록면
85 - 92 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 라인 형태인 가닥(Strand) 지오메트리 이미지와 합성곱 신경망(Convolutional Neural Network, ConvNet 혹은 CNN)을 이용하여 저해상도 헤어 및 털 시뮬레이션을 고해상도로 노이즈 없이 표현할 수 있는 기법을 제안한다. 저해상도와 고해상도 데이터 간의 쌍은 물리 기반 시뮬레이션을 통해 얻을 수 있으며, 이렇게 얻어진 데이터를 이용하여 저해상도-고해상도 데이터쌍을 설정한다. 학습할 때 사용되는 데이터는 헤어 가닥 형태의 위치를 지오메트리 이미지로 변환하여 사용한다. 본 논문에서 제안하는 헤어 및 털 네트워크는 저해상도 이미지를 고해상도 이미지로 업스케일링(Upscaling)시키는 이미지 합성기를 위해 사용된다. 테스트 결과로 얻어진 고해상도 지오메트리 이미지가 고해상도 헤어로 다시 변환되면, 하나의 매핑 함수로 표현하기 어려운 헤어의 찰랑거리는(Elastic) 움직임을 잘 표현할 수 있다. 합성 결과에 대한 성능으로 이전 물리 기반 시뮬레이션보다 빠른 성능을 보였으며, 복잡한 수치해석을 몰라도 쉽게 실행이 가능하다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0