메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이원진 (서울대학교)
저널정보
대한치과의사협회 대한치과의사협회지 대한치과의사협회지 Vol.60 No.5(Wn.635)
발행연도
2022.4
수록면
299 - 314 (16page)

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning is a subset of machine learning, and machine learning is also a subset of artificial intelligence (AI). The biggest difference between machine learning and deep learning is that in the learning of artificial intelligence models, machine learning basically requires a human feature extraction process before learning, but deep learning does not require this process and the original data is directly used as input. The development of deep learning coincides with the development of artificial neural networks (ANNs), and many people have contributed to the development of artificial neural networks for decades. The following five models are the representative architectures most widely used in deep learning. That is, Deep Feedforward Neural Network (DFFNN), Convolutional Neural Network (CNN), Deep Belief Network (DBN), Autoencoders (AE), and Long Short-Term Memory (LSTM) Network. A convolutional neural network (CNN) is a feedforward NN composed of a convolutional layer, a ReLU activation function, and a pooling layer. CNNs provide properties of weight sharing and local connectivity to process high-dimensional data. In dental and medical fields, an AI model that can be interpretable or explainable (XAI) is needed to increase patient persuasiveness. In the future, explainable AI (XAI) will become an indispensable and practical component in order to obtain an improved, transparent, secure, fair and unbiased AI learning model.

목차

ABSTRACT
1. 딥러닝(deep learning)의 역사
2. 딥러닝(deep learning)의 현황
3. 딥러닝(deep learning)의 미래 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0