메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung Il Yu (Gyeongsang National University) Chaeyoung Rhee (Gyeongsang National University) Kyung Hwa Cho (Ulsan National Institute of Science and Technology) Seung Gu Shin (Gyeongsang National University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제2호
발행연도
2023.4
수록면
147 - 156 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Estimating the liquid level in an anaerobic digester can be disturbed by its closedness, bubbles and scum formation, and the inhomogeneity of the digestate. In our previous study, a soft-sensor approach using seven pressure meters has been proposed as an alternative for real-time liquid level estimation. Here, machine learning techniques were used to improve the estimation accuracy and optimize the number of sensors required in this approach. Four algorithms, multiple linear regression (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) with radial basis function kernel were compared for this purpose. All models outperformed the cubic model developed in the previous study, among which the ANN and RF models performed the best. Variable importance analysis suggested that the pressure readings from the top (in the headspace) were the most significant, while the other pressure meters showed varying significance levels depending on the model type. The sensor that experienced both headspace and liquid phases depending on the level variation incurred a higher error than other sensors. The results showed that the ML techniques can provide an effective tool to estimate digester liquid levels by optimizing the number of sensors and reducing the error rate.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-539-001344854