메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wei Bai (Ningxia Normal University) Fengying Li (Ningxia Normal University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제1호
발행연도
2023.2
수록면
231 - 241 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Aiming at the problems of low accuracy and less prediction time step in traditional statistical model for PM2.5 concentration prediction, a PM2.5 concentration prediction method based on deep learning in Internet of Things air monitoring system is proposed. Firstly, the spatiotemporal correlation of each station data in the Internet of Things monitoring system is analyzed, and the cubic spline interpolation method is used to fill in the missing data. Then, the temporal attention of the input data is obtained by attention mechanism, and the feature encoder is used to encode the data to obtain the intermediate features. Finally, the intermediate feature is fused with the historical information of PM2.5 concentration, and the predicted value is obtained through the feature decoder. Using the proposed model to predict the PM2.5 concentration in Beijing, the experimental results show that the long-term PM2.5 predicted value is very close to the real value, and the RMSE and MAE are 17.93 μg/㎥ and 11.52 μg/㎥, respectively, which are better than other comparison models. So, this model is suitable for multivariable long time series forecasting scenarios.

목차

ABSTRACT
1. Introduction
2. Related Work
3. Data Analysis and Preprocessing
4. Research Method
5. Experiment and Analysis
6. Conclusions
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-539-001345179