메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박대흠 (동의대학교) 임종훈 (동의대학교) 장시웅 (동의대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 춘계종합학술대회 논문집 제26권 제1호
발행연도
2022.5
수록면
154 - 157 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 Tensorflow CNN 환경에서 Object 탐지 방식은 Tensorflow 자체적으로 Object 라벨링 작업과 탐지를 하는 방식이다. 그러나 현재 YOLO의 등장으로 이미지 객체 탐지의 효율성이 높아졌다. 그로 인하여 기존 신경망보다 더 많은 심층 레이어를 구축할 수 있으며 또한 이미지 객체 인식률을 높일 수 있다.
따라서 본 논문에서는 Darknet, YOLO를 기반으로 한 Object 탐지 시스템을 설계하고 기존에 사용하던 합성곱 신경망에 기반한 다중 레이어 구축과 학습을 수행함으로써 탐지능력과 속도를 비교, 분석하였다. 이로 인하여 본 논문에서는 Darknet의 학습을 효율적으로 이용하는 신경망 방법론을 제시하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존 연구
Ⅲ. 레이어 수에 따른 시스템 설계
Ⅳ. 실험 결과
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001357199