메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송수현 (부산대학교) 박성환 (부산대학교) 권동현 (부산대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제3호
발행연도
2022.6
수록면
487 - 499 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝과 같은 기계학습 기술은 최근에 광범위하게 활용되고 있다. 이러한 딥러닝은 최근 낮은 컴퓨팅 성능을 가지는 임베디드 기기 및 엣지 디바이스에서 보안성 향상을 위해 ARM TrustZone과 같은 신뢰 수행 환경에서 수행되는데, 이와 같은 실행 환경에서는 제한된 컴퓨팅 자원으로 인해 정상적인 수행에 방해를 받는다. 이를 극복하기 위해 DNN 모델 partitioning을 통해 TEE의 제한된 memory를 효율적으로 사용하며 DNN 모델을 보호하는 TPMP를 제안한다. TPMP는 최적화된 memory 스케줄링을 통해 기존의 memory 스케줄링 방법으로 수행할 수 없었던 모델들을 TEE 내에서 수행하여 시스템 자원 소모를 거의 증가시키지 않으면서 DNN의 높은 기밀성을 달성한다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식
III. 위협 모델
IV. 디자인
V. 구현
VI. 실험 결과
VII. 관련 연구
VIII. 고찰
IX. 결론
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0