메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xingxin Xiao (Jiangsu University) Hui Chen (Xi’an Aerospace Propulsion Institute) Liang Dong (Jiangsu University) Houlin Liu (Jiangsu University) Chuanhan Fan (Jiangsu University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.15 No.2
발행연도
2022.6
수록면
287 - 296 (10page)
DOI
10.5293/IJFMS.2022.15.2.287

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The centrifugal pump is an important rotating machine and it is very critical to identify and differentiate among its common faults as quickly and accurately as possible. Based on the ReliefF algorithm and the sparrow search algorithm (SSA) in conjunction with support vector machine (SVM), an approach for faults classification and diagnosis of centrifugal pumps is proposed, its advantages over traditional fault diagnosis methods include a reduction in the number of characteristic parameters, shorter diagnosis times, as well as improved classification accuracy and robustness. We collected the fault data by designing a centrifugal pump fault test bench that recorded vibration signals for the rotor misalignment fault, the rotor unbalance fault, the seal ring wear fault, and normal operating conditions, and preprocessed the collected signals with Kalman filtering to remove noise interference, the time domain characteristic indexes and the frequency domain characteristic indexes of the filtered signal were extracted, each feature index is given a distinct weight using the ReliefF method, and the eigenvalues with weights less than the threshold are deleted, and the feature indexes that remain create a defect feature matrix. Particle swarm optimization (PSO), genetic algorithm (GA), and simulated annealing algorithm (SA) were used to optimize the SVM for comparison in order to verify the SSA-SVM model’s performance for fault diagnosis. The comparison results show that the model has high recognition accuracy, short Classification time, and strong robustness.

목차

Abstract
1. Introduction
2. Kalman Filter
3. Fault characteristic parameters
4. ReliefF Algorithm and Sparrow Search Algorithm
5. Test and Analysis
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0