메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
민진우 (전북대학교) 나승훈 (전북대학교) 신종훈 (한국전자통신연구원) 김영길 (한국전자통신연구원) 김강일 (GIST)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.8
발행연도
2022.8
수록면
617 - 626 (10page)
DOI
10.5626/JOK.2022.49.8.617

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔다. 그 중 그래프 기반 의존 파싱은 입력 문장을 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각의 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻어 이를 통해 트리를 생성하는 Biaffine 어텐션 모델이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 부분 트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 부분 트리의 정보를 효율적으로 활용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(부분 트리-부분 트리)로의 부분 트리 정보를 직접 모델링하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 기존 Biaffine 어텐션 방식의 의존 파싱 모델 대비 향상된 결과를 얻었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 모델
4. 실험
5. 결론
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0