메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김수지 (인하대학교) 박인규 (인하대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제4호
발행연도
2022.7
수록면
487 - 498 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
깊이 영상은 3차원 공간상의 거리 정보를 2차원 평면에 나타낸 영상이며 다양한 3D 비전 연구에서 유용하게 사용된다. 기존의 많은 깊이 추정 연구는 주로 좁은 FoV (Field of View) 영상을 사용하여 전체 장면 중 상당 부분이 소실된 영상에 대한 깊이 정보를 추정한다. 본 논문에서는 소수의 좁은 FoV 영상으로부터 360° 전 방향 RGBD 영상을 동시에 생성하는 기법을 제안한다. 오버랩 되지 않는 4장의 소수 영상으로부터 전체 파노라마 영상에 대해서 상대적인 FoV를 추정하고 360° 컬러 영상과 깊이 영상을 동시에 생성하는 적대적 생성 신경망 기반의 영상 생성 모델을 제안하였으며, 두 모달리티의 특징을 공유하여 상호 보완된 결과를 확인한다. 또한 360° 영상의 구면 특성을 반영한 네트워크를 구성하여 개선된 성능을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 기법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0