메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Woo Young Hwang (Korea University) Jun-Geol Baek (Korea University)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제48권 제4호
발행연도
2022.8
수록면
355 - 366 (12page)
DOI
10.7232/JKIIE.2022.48.4.355

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In manufacturing process, data is collected in the form of correlated sequences. Multivariate to multivariate time series (MMTS) forecasting is an important factor in manufacturing. MMTS forecasting is a notoriously challenging task considering the need for incorporating both non-linear correlations between variables (inter-relationships) and temporal relationships of each univariate time series (intra-relationships) while forecasting future time steps of each univariate time series (UTS) simultaneously. However, previous works use deep learning models suited for low-dimensional data. These models are insufficient to model high-dimensional relationships inherent in multivariate time series (MTS) data. Furthermore, these models are less productive and efficient as they focus on predicting a single target variable from multiple input variables. Thus, we proposed two phase MTS forecasting. First, the proposed method learns the non-linear correlations between UTS (inter-relationship) through self-attention based convolutional autoencoder and conducts cause analysis. Second, it learns the temporal relationships (intra-relationships) of MTS data through temporal convolutional network and forecasts multiple target outputs. As an end-to-end model, the proposed method is more efficient and derives excellent experimental results.

목차

1. Introduction
2. Background
3. Proposed Method
4. Experiments
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-001628525