메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종민 (Dongseo University) 김선용 (Dongseo University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제1호
발행연도
2022.3
수록면
56 - 61 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
전 세계적으로 에너지 사용량이 증가함에 따라 지구온난화와 같은 환경문제가 초래되었으며, 이에 각국은 협정‧협약을 통한 에너지 산업의 탈탄소화와 함께 화석 에너지를 신재생에너지로 빠르게 전환 중이다. 발전량이 급변하는 신재생에너지 보급 확대에 따라 효율적인 에너지 관리의 필요성이 대두되는 한편, AI 기술이 발전함에 따라 에너지 관리 분야와 결합한 AI 기반 빌딩 에너지 관리시스템(Building Energy Management System, BEMS)의 연구 및 개발이 활발히 이루어지고 있다. 본 논문에서는 강화학습 기법 중 Multi-Armed Bandit(MAB) 알고리즘을 활용하여 빌딩 각 방의 조명시스템 전력사용량을 효율적으로 관리함과 동시에 사용자들의 불쾌지수를 최소화할 수 있는 알고리즘을 제안하고, 시뮬레이션을 통해 성능을 검증한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 빌딩의 방별 조도값 설정 기법 알고리즘
Ⅲ. 성능평가
Ⅳ. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-056-001603885