메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도형 (국립기상과학원) 이승욱 (국립기상과학원) 정형세 (국립기상과학원) 박성화 (국립기상과학원) 김연희 (기상청)
저널정보
한국기상학회 대기 대기 Vol.32 No.3
발행연도
2022.9
수록면
179 - 189 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 고찰
4. 요약 및 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-453-000112286