메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황원용 (한국폴리텍대학) 김효관 (한국폴리텍대학)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제15권 제5호
발행연도
2022.10
수록면
360 - 366 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 흑백 사진으로만 남아 있는 한국의 전통 고궁 사진을 적대적 생성 신경망 기법의 하나인 Pix2Pix를 활용하여 컬러 사진으로 복원하기 위한 학습 모델 구조를 제시한다. Pix2Pix는 합성 이미지를 생성기와 합성 여부를 판정하는 판별기의 학습 모델 조합으로 구성된다. 본 논문은 판별기의 수용 영역을 조절하여 인공지능 모델을 학습하고 그 결과를 고궁 사진이 가지는 특성을 고려하여 분석하는 내용을 다룬다. 기존에 흑백 사진 복원에 사용하는 Pix2Pix의 수용 영역은 주로 고정된 크기로 사용하였으나 이미지의 변화가 다양한 고궁 사진을 복원함에 있어서는 고정된 수용 영역을 일률적으로 적용하기에 적합하지 않다. 본 논문에서는 고궁의 특성을 반영할 수 있는 판별기의 수용 영역을 확인하기 위해 기존의 고정된 수용 영역의 크기를 변화시켜 나타나는 결과를 관찰하였다. 실험은 사전에 준비한 고궁 사진을 기반으로 판별기의 수용 영역을 조정하고 모델의 학습을 진행하였다. 판별기의 수용 영역 변화에 따른 모델의 손실을 측정하고 최종 학습한 학습 모델을 복원 대상 흑백 사진에 대입하여 복원 결과를 확인한다.

목차

요약
Abstract
1. 서론
2. Pix2Pix 개요
3. 본론
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0