메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eunkyung Yi (Ewha Womans University) Hyowon Cho (Korea University) Sanghoun Song (Korea University)
저널정보
한국영어학회 영어학 영어학 Volume.22
발행연도
2022.1
수록면
1,101 - 1,115 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study reports on three language processing experiments with most up-to-date neural language models from a psycholinguistic perspective. We investigated whether and how discourse expectations demonstrated in the psycholinguistics literature are manifested in neural language models, using the language models whose architectures and assumptions are considered most appropriate for the given language processing tasks. We first attempted to perform a general assessment of a neural model’s discourse expectations about story continuity or coherence (Experiment 1), based on the next sentence prediction module of the bidirectional transformer-based model BERT (Devlin et al. 2019). We also studied language models’ expectations about reference continuity in discursive contexts in both comprehension (Experiment 2) and production (Experiment 3) settings, based on so-called Implicit Causality biases. We used the unidirectional (or left-to-right) RNN-based model LSTM (Hochreiter and Schmidhuber 1997) and the transformer-based generation model GPT-2 (Radford et al. 2019), respectively. The results of the three experiments showed, first, that neural language models are highly successful in distinguishing between reasonably expected and unexpected story continuations in human communication and also that they exhibit human-like bias patterns in reference expectations in both comprehension and production contexts. The results of the present study suggest language models can closely simulate the discourse processing features observed in psycholinguistic experiments with human speakers. The results also suggest language models can, beyond simply functioning as a technology for practical purposes, serve as a useful research tool and/or object for the study of human discourse processing.

목차

ABSTRACT
1. Introduction
2. Experiment 1: BERT’s Evaluation of Discourse Coherence
3. Experiment 2: LSTM’s Reference Expectations in Comprehension
4. Experiment 3: GPT-2’s Choice of Reference in Next Sentence Production
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0