메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유기현 (군산대학교) 이동기 (군산대학교) 이창우 (군산대학교) 남광우 (군산대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제27권 제5호
발행연도
2022.10
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기술의 발전에 따라 학습을 통해 선호도 랭킹 추정을 하기 위한 다양한 연구 개발이 진행되고 있으며, 웹 검색, 유전자 분류, 추천 시스템, 이미지 검색 등 여러 분야에 걸쳐 이용되고 있다. 딥러닝 기반의 선호도 랭킹을 추정하기 위해 근사(approximation) 알고리즘을 이용하는데, 이 근사 알고리즘에서 적정한 정도의 정확도를 보장할 수 있도록 모든 비교 대상에 k번 이상의 비교셋을 구축하게 되며, 어떻게 비교셋을 구축하느냐가 학습에 영향을 끼치게 된다. 이 논문에서는 크라우드 소싱 기반의 딥러닝 선호도 측정을 위한 쌍체 비교 셋을 생성하는 새로운 알고리즘인 k-disjoint 비교셋 생성 알고리즘과 k-체이닝 비교셋 생성 알고리즘을 제안한다. 특히 k-체이닝 알고리즘은 기존의 원형 생성 알고리즘과 같이 데이터 간의 연결성을 보장하면서도 안정적인 선호도 평가를 지원할 수 있는 랜덤적 성격도 함께 가지고 있음을 실험에서 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 쌍체 비교 셋 생성 알고리즘
4. 실험 및 평가
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000152091