메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
엄호용 (Kongju National University) 백승묵 (Kongju National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제11호
발행연도
2022.11
수록면
1,658 - 1,665 (8page)
DOI
10.5370/KIEE.2022.71.11.1658

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an optimal electric load forecasting technique by applying several activation functions and optimization methods in the internal structure of the Long Short-Term Memory (LSTM) algorithm to forecast mid-term electric load in Korea. As the activation function, the rectified linear unit (ReLU) and hyperbolic tangent (Tanh) are used. Optimization methods such as stochastic gradient descent (SGD) and adaptive moment optimization (Adam) are compared in the paper. In the input data, daily peak load over past seven days, maximum and minimum temperatures are used. In order to increase the efficiency of learning, special weeks and special day load data are replaced. The proposed method shows stable and great performance with small average errors, compared to the RANN based forecasting method which is a previous study. Especially, the estimated error is improved in the summer and winter where the temperature changes significantly.

목차

Abstract
1. 서론
2. LSTM (Long Short-Term Memory)
3. 입력데이터
4. 사례연구
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0