메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김정준 (Korea Institute of Robotics & Technology Convergence) 강전성 (Korea Institute of Robotics & Technology Convergence) 정현준 (Korea Institute of Robotics & Technology Convergence) 박병훈 (T3Q)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제11호(통권 제224호)
발행연도
2022.11
수록면
13 - 18 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 학습에 참여하는 각 디바이스의 모델들로부터 성능검증에 따라 가중치를 두어 글로벌 모델을 업데이트하는 VW-FedAVG(Validation based Weighted FedAVG)를 두 가지 방식으로 제안 한다. 첫 번째 방식은 서버 검증(Server side Validation) 구조로 글로벌 모델을 업데이트 하기 전에 각 로컬 클라이언트 모델을 하나의 전체 검증 데이터셋을 통해 검증하도록 설계 했다. 두 번째는 클라이언트 검증(Client side Validation) 구조로 검증 데이터셋을 각 클라이언트에 고르게 분배하여 검증을 한 후 글로벌 모델을 업데이트 하는 방식으로 설계 했다. 전체 실험에 적용한 데이터셋은 MNIST, CIFAR-10으로 이미지 분류에 대해 IID, Non-IID 분포에서 기존 연구 대비 더 높은 정확도를 얻을 수 있었다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Proposed Method
IV. Experiment Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0