메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung-Min Woo (Koreatech) Seong-Eui Lee (Korea University) Jong-Ok Kim (Korea University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.6
발행연도
2022.12
수록면
412 - 420 (9page)
DOI
10.5573/IEIESPC.2022.11.6.412

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A deep texture adaptive denoising method is proposed to achieve high perceptual image quality. Textual information is learned through a designed loss function utilizing a pre-generated texture map to distinguish textual areas from flat areas. In the training process, the proposed network internally finds texture and flat regions and differs in denoising strength in the two regions. Unlike existing DNN-based denoising methods, the proposed method retains high-frequency textual information while removing residual noise in flat regions as much as possible. The gradient distribution of the image before and after the denoising was compared. The proposed method outperformed the existing methods with higher PSNR and SSIM scores in visual quality. In addition, the strength of removing textual noise was controllable with a single parameter. Thus, the proposed method is practically feasible as a denoising apparatus.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Scheme
4. Performance Evaluation
5. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0