메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
B. Veerasamy (Hindusthan College of Engineering and Technology) C. M. Sangeetha (Hindusthan College of Engineering and Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.4
발행연도
2022.12
수록면
366 - 372 (7page)
DOI
10.5391/IJFIS.2022.22.4.366

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Methods to reduce the iterations needed to process a given video stream are referred to as video compression techniques. Videos consume a large amount of storage space on computational systems or handheld devices, and video compression is also used to lower the dimensionality of data owing to constraints on storage resources. In this study, we propose a macro block-based fuzzy logic video compression (MB-FL) algorithm. The proposed approach uses a fuzzy-based search to maintain pixel resolution, which is ideal for real-time streaming media and thus increases peak signal-to-noise ratio (PSNR) and subjective quality. Compression is performed on repeated frames of data files via complex equations, and the repeating patterns are then substituted with smaller data or coding fragments. Owing bandwidth limitations, compression is often necessary to transmit and receive content over network connections. Using a fuzzy membership function, the multiscale aspect of our method evaluates the connection of individual components in the current frame to those in the reference frame. The results of an experimental evaluation show that the proposed approach significantly compressed files using a fuzzy-based search. We compared the performance of MB-FL with that of existing models to measure the quality of compressed video stream.

목차

Abstract
1. Introduction
2. Related Works
3. MB-FL
4. Results and Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000319145