메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Alif Tri Handoyo (Bina Nusantara University) Hidayaturrahman (Bina Nusantara University) Criscentia Jessica Setiadi (Bina Nusantara University) Derwin Suhartono (Bina Nusantara University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.4
발행연도
2022.12
수록면
401 - 413 (13page)
DOI
10.5391/IJFIS.2022.22.4.401

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Sarcasm is the use of words commonly used to ridicule someone or for humorous purposes. Several studies on sarcasm detection have utilized different learning algorithms. However, most of these learning models have always focused on the contents of expression only, thus leaving the contextual information in isolation. As a result, they failed to capture the contextual information in the sarcastic expression. Moreover, some datasets used in several studies have an unbalanced dataset, thus impacting the model result. In this paper, we propose a contextual model for sarcasm identification in Twitter using various pre-trained models and augmenting the dataset by applying Global Vector representation (GloVe) for the construction of word embedding and context learning to generate more sarcastic data, and also perform additional experiments by using the data duplication method. Data augmentation and duplication impact is tested in various datasets and augmentation sizes. In particular, we achieved the best performance after using the data augmentation method to increase 20% of the data labeled as sarcastic and improve the performance by 2.1% with an F1 Score of 40.44% compared to 38.34% before using data augmentation in the iSarcasm dataset.

목차

Abstract
1. Introduction
2. Materials
3. Methodology
4. Results and Discussion
5. Confusion Matrix Analysis
6. Conclusions and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000319190