메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황영서 (전남대) 박근형 (전남대) 양강혁 (전남대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第1號(通卷 第411號)
발행연도
2023.1
수록면
313 - 320 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most of the maintenance and safety inspections of buildings are performed with visual assessment of the inspector, which consumes a lot of time and cost. With the development of computer vision and digital technologies such as 3D Laser scanners, automatic defect recognition using image processing and artificial intelligence has been widely studied. Current approach is largely relying on the image obtained from the camera and the recognition performance could be varied depending on the surrounding environment. Recently, studies using 3D Laser scanner are being conducted to solve these problems. However, terrestrial laser scanners are expensive, so it is difficult to apply at the construction site. Therefore, this study proposed a method that can recognize masonry wall defects using a Microelectromechanical systems based Light Detection and Ranging sensor that having much lower price and reliable performance. This study was performed using masonry wall structures and data were collected from samples having various types of defects in a laboratory environment. Masonry wall defects were recognized using ResNet-50 and VGG16 models, which are widely used in previous studies. As a result of the classification, ResNet-50 and VGG16 achieved 98.75% and 96.88% accuracy, respectively. The results of this study can be utilized in the development of real-time defect recognition method for a masonry wall at construction sites.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 조적벽체 결함 인식 모델 개발 및 실험
4. 조적벽체 결함인식 기술 성능 분석
5. 결론
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-540-000401055