메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
백승준 (평택대학교) 김준완 (평택대학교) 백주련 (평택대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2023년 한국컴퓨터정보학회 동계학술대회 논문집 제31권 1호
발행연도
2023.1
수록면
31 - 34 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주택 매매에 있어서 가격에 대한 예측은 매우 중요하지만, 실거래 발생 전까지는 정확한 가격을 알 수 없다. 그렇기에 주택가격을 예측하는 많은 연구가 진행되어왔다. 주택가격을 결정하는 영향요인은 크게 주택의 내부요인과 주택의 외부 요인으로 구분되는데, 내부적인 요인 (공급면적, 전용면적, 층, 방 개수 등)에 대한 연구가 많이 진행되었다. 하지만 외부적인 요인 (위치 요인, 금융요인 등)에 대한 연구는 미비하였다. 본 연구는 주택 매수자 관점에서 가격 예측 시 외부적인 요인 역시 중요하다고 판단하여 외부요인을 적용하고자 한다. 본 논문에서 제안하는 방법은 다양한 외부요인 중 주택의 위치 정보를 활용하여, 해당 정보 기반으로 도출 가능한 데이터를 추가한다. 또한 이용량에 따른 지하철역 데이터를 추가하여 관련된 여러 영향요인들을 분석 및 적용 후 머신러닝 기반 예측 모델을 생성한다. 생성된 모델들에 주택매매 실거래 데이터를 적용하여 예측 정확도를 비교 후 높은 정확성을 보이는 모델 결과에 주요하게 영향을 끼치는 요인에 관하여 기술한다.

목차

요약
Ⅰ. Introduction
Ⅱ. The Proposed Scheme
Ⅲ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000349735